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P J Brown1,2, E Lelièvre-Berna1 and K R A Ziebeck2

1 Institut Laue-Langevin, BP156 38042 Grenoble, France
2 Department of Physics, Loughborough University, Leicestershire LE11 3TU, UK

Received 13 December 2002
Published 3 March 2003
Online at stacks.iop.org/JPhysCM/15/1747

Abstract
The dependence of the cross-section for magnetic scattering of neutrons on the
angle θk between the field direction and the scattering vector has been used to
study the orbital contribution to magnetic scattering from the moments aligned
by a magnetic field in chromium and vanadium. The results lend support to
band structure calculations which predict very high ratios of orbital to spin
moments. The magnetic scattering from the moments induced in Cr and V by
a 9.5 T field applied parallel to 〈110〉, in sets of crystallographically equivalent
reflections having different values of θk , has been determined from polarized
neutron flipping ratio measurements. The results have been analysed using the
tensor operator formalism. The results do not show the equatorial anisotropy
predicted by a simple atomic model in which the orbital moment arises from
mixing between empty eg and filled t2g states. The azimuthal variation observed
suggests that the major part of the orbital moment is due to 3d states with
projections of angular momentum m = ±2.

1. Introduction

The finite-temperature properties of metals in which there is more than one partly filled electron
shell at the Fermi surface present an ongoing problem for both experiment and theory. One
property which any model should predict is the ratio of spin to orbital contributions to the
magnetization, whether it be spontaneous or induced by an applied magnetic field. Recently
there has been an upsurge of interest in this ratio, triggered by the new possibility of measuring
it directly using magnetic x-ray scattering [1, 2]. Such experiments have already been made
on a number of magnetically ordered 3d systems, but they are as yet of limited accuracy [3, 4].
They would be very difficult to carry out on paramagnetic systems in which even a high field
can only align a small moment. In the past the ratio of spin to orbital magnetization has usually
been estimated from the radial dependence of the magnetic neutron scattering, using a form
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factor fitting technique. In this method the experimentally determined form factor f (k) is
fitted with a function of the form [5]

µT f (k) = 〈 j0〉(µS + µL) + 〈 j2〉µL + µD (1)

where 〈 j0〉, 〈 j2〉 are the first- and second-order radial form factor integrals for the atom [6],
µS and µL the spin and orbital moments and µD a diffuse moment. µS , µL and µD are
the parameters of the model and µT = µS + µL + µD is the moment per atom obtained
from magnetization measurements. In many of the models which are used to describe the
magnetization distribution in metallic systems, the proportion of the magnetization which is
ascribed to the orbital moment is a disposable parameter. However, the fact that the orbital
form factor (〈 j0〉+〈 j2〉) differs only in shape from the spin form factor (〈 j0〉) means that, except
in some special cases where the two moments are opposite and nearly equal [7], differentiation
between orbital and spin moment depends very much on assumptions made about the shapes of
〈 j0〉 and 〈 j2〉 themselves. In x-ray (synchrotron) scattering the geometrical factors multiplying
the orbital and spin contributions to the magnetic scattering are different [8].

The paramagnetic form factors of the 3d, 4d and 5d transition metals have been extensively
studied using polarized neutron scattering [9] and many of the results have been interpreted
using the above model. There is not, however, as yet general agreement between the orbital
moments obtained in the polarized neutron measurements, and those predicted by theory.
Particularly large proportions of orbital magnetization in the induced moments have been found
in studies of chromium and vanadium [10–13]. For chromium the results suggest that 60% of
the total induced moment is of orbital origin. Numerical calculations of the paramagnetic form
factors of cubic transition metals, including chromium and vanadium, have been made by [14]
from local density bands obtained using the KKR formalism. These calculations are in good
agreement with the neutron results for chromium although they give an even higher percentage
of orbital moment (82%). Unfortunately these authors do not discuss the anisotropy of the
orbital scattering relative to the magnetization direction. Such anisotropy is expected because
the spatial anisotropy of the electron wavefunctions depends directly on their orbital quantum
numbers and hence on the orientation of any orbital moment.

2. Magnetic scattering by orbital moments

The crucial property exploited in this study is the way in which magnetic neutron scattering
depends on the azimuthal angle θk between the magnetization direction and the scattering vector
k. This dependence is different for the spin and orbital components of the magnetization. The
magnetic scattering amplitude of a Bragg reflection with scattering vector k is given by the
projection on the plane perpendicular to k of the kth Fourier component of the magnetization
distribution. If the spin–orbit coupling energy is small compared to the crystal field splitting,
the orbitals occupied by unpaired electrons, and hence the distribution of spin moment, should
be independent of the direction of magnetization. The amplitude of the magnetic scattering
due to spin should therefore be the same (apart from the reduction factor sin θk introduced by
the projection) in different equivalent directions with different values of θk. The same is not
true for orbital magnetization where the form of the orbital functions and hence the shape of
the orbital magnetization distribution depends on the direction of the applied field.

The theory of neutron scattering by orbital moments has been treated by several
authors [15–18]. Here the tensor operator method introduced in [17] and further
elaborated [18, 19] has been used. These latter authors develop an expression for the magnetic
interaction operator for scattering by an electron wavefunction defined by angular momentum
quantum numbers J, M (J = L + S) as a vector function M⊥(k) of the scattering vector k.
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M⊥(k) is expressed in spherical components M⊥(k)q , q = 0,±1, where

M⊥1 =
√

3

8π
(M⊥x + iM⊥ y); M⊥0 =

√
3

4π
M⊥z;

M⊥−1 =
√

3

8π
(M⊥x − iM⊥ y).

(2)

M⊥(k) is given in units of γN e2/mc2 by

M⊥(k)q = √
4π

∑
K Q

∑
K ′Q′

Y K
Q (k̂)(A(K , K ′) + B(K , K ′))(K ′Q′ J ′M ′|J M)(K QK ′ Q′|1q). (3)

The coefficients A(K , K ′) and B(K , K ′) give the orbital and spin contributions
respectively and the two final brackets are Clebsch–Gordon vector-coupling (VC) coefficients.
The radial dependence of the scattering is in the coefficients A and B through the form factor
integrals:

〈 jK (k)〉 =
∫

U 2(r) jK (kr)4πr2 dr (4)

where U 2(r) is the radial dependence of the electron density and the jK(kr) are spherical Bessel
functions. The maximum values of the integers K , K ′, Q and Q′ depend on the wavefunction
through the VC coefficient (K ′ Q′ J ′M ′|J M). The A(K , K ′) = 0 unless K = K ′ ±1, whereas
the B(K , K ′) are zero unless K = K ′ or K ′ ± 1. The polarization dependence of the neutron
scattering cross-section depends on just the component of M⊥ parallel to the polarization
direction, which is in the present case parallel to the field direction. The experiment thus
measures just the q = 0 component of M⊥ and the VC coefficient (K QK ′ Q′|10) ensures that
M⊥0 is zero unless Q = −Q′.

If the wavefunctions of the electrons giving rise to the magnetization can be expressed as
the sum of single-electron functions, ψi , expressed in an l, m basis with l = 2, then the orbital
part of the magnetic interaction vector can be written as

M⊥(k)0 orbital = √
4π

∑
K ′

[∑
K

A′(K , K ′)
∑

Q

(
Y K

Q (k̂)(K QK ′−Q|10)α(K ′, Q)

)]
(5)

with

A′(K , K ′) = −(2(2K + 1))
1
2 (2l + 1)

3
2 (2K + 1)(i)K ′+1(〈 jK ′−1(k)〉 + 〈 jK ′+1(k)〉)

× A(K ′, K ′, 2)

(
1 K K ′
0 0 0

) {
1 1 1
K ′ K K ′

}
. (6)

The final two factors in equation (6), the first in brackets and the second in braces, are a 3 j
symbol and a 6 j symbol respectively [21]. The form of A(K ′, K ′, l) is given in equation 6.44
of [18], which has been used to calculate A′′(K , K ′) = A′(K , K ′)/(〈 jK ′−1(k)〉 + 〈 jK ′+1(k)〉).
The values of A′′(K , K ′) and the VC coefficients needed to evaluate the sums in equation (5)
are given in table 1. The only terms in equation (5) which depend on the actual composition
of the single-electron functions |lm〉 are the α(K ′, Q), given by

α(K ′, Q) =
∑
m,m′

∑
i

〈m ′|ψi |m〉(K ′−Q2m ′|2m). (7)

If the unperturbed d functions are degenerate,orbital magnetization is due to a small imbalance,
induced by the field, in the energies of orbitals with opposite values of the projection m. The

perturbed functions of lowest energy have the form ψ±m =
√

1
2 ((1 +ξm)|m〉± (1−ξm)|−m〉),

with mean orbital angular momentum 〈Lz〉 = ξ1 + 2ξ2. The only non-zero values of α are
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Table 1. Coefficients needed in the calculation of M⊥0 orbital . A′′(K , K ′) =
A′(K , K ′)/(〈 jK ′−1(k)〉 + 〈 jK ′+1(k)〉).
K ′ 1 3
K 0 2 2 4

A′′(K , K ′) −√
2/3 −√

1/3 −√
8/7 −√

3/7

Q 0 0 0 ±2 0 ±2

(K QK ′−Q|10) 1 −√
2/5 3/

√
35 1/

√
7 −2/

√
21 −1/

√
7

α(1, 0) = −
√

1
6 (2ξ2 + ξ1) and α(3, 0) = −

√
1

14 (ξ2 − 2ξ1). Carrying out the summation and
arranging the equation so that terms with the same radial dependence are grouped together
gives

M⊥(k)0 orbital = √
4π

{
1

3
(2ξ2 + ξ1)

(
Y 0

0 (k̂) − 1√
5

Y 2
0 (k̂)

)
(〈 j0(k)〉 + 〈 j2(k)〉)

+
2

49
(ξ2 − 2ξ1)

(
3√
5

Y 2
0 (k̂) − Y 4

0 (k̂)

)
(〈 j2(k)〉 + 〈 j4(k)〉)

}
. (8)

Writing the spherical harmonic functions Y K
Q (k̂) in terms of the spherical polar angles θk and

φk , one gets

M⊥(k)0 orbital = sin2 θk(
1
2 (2ξ2 + ξ1)(〈 j0(k)〉 + 〈 j2(k)〉)

+ 3
28 (ξ2 − 2ξ1)(5 cos2 θk − 1)(〈 j2(k)〉 + 〈 j4(k)〉)). (9)

The spin scattering arises from the small imbalance (δ), induced by the field, in the
occupancies of states ψi at the Fermi surface with spins parallel and antiparallel to the field.
Since δ, ξ1 and ξ2 are �1, terms in the sums over matrix elements, of second order and higher
in δ and ξi can be neglected. With this proviso, the spin scattering M⊥(k)0 spin/ sin2 θk is
independent of the direction of magnetization and, unlike the orbital term, should be the same
for equivalent reflections measured with different values of θk . The component of the magnetic
interaction vector parallel to the field can then be written as

M⊥(k)0 spin = sin2 θk

√
4π

∑
K

B ′(K )
∑

Q

(
Y K

Q (k̂)β(K , Q)
)

(10)

with

B ′(K ) = (2K + 1)
1
2 (20K 0|20)〈 jK(k)〉. (11)

The part which depends on the electron wavefunction is in the terms β(K , Q) given by

β(K , Q) =
∑
m,m′

∑
i

〈m ′|S0ψi |m〉(K Q2m ′|2m). (12)

If the orbital states are all equally occupied, β(K , Q) = 0 unless K = Q = 0 and
M⊥(k)0 spin = sin2 θk〈 j0(k)〉δ.

3. Experimental details

The single crystals of pure chromium and vanadium used in the experiments were mounted with
a [11̄0] axis parallel to the field direction of the 10 T superconducting magnet on the polarized
neutron diffractometer D3. The chromium crystal which had dimensions ≈5×5×10 mm3 with
its long axis parallel to 〈11̄0〉 was cut from a large boule. The vanadium crystal was the largest



Orbital anisotropy of the field-induced moments in chromium and vanadium 1751

of those used in the previous form factor measurements [13]. With this crystal orientation,
reflections of the form hhl have scattering vectors at θk = 90◦ to the field axis, whereas for
the cubically equivalent hlh and lhh reflections θk = cos−1((h − l)/

√
2(2h2 + l2)). The latter

type of reflection can be measured with the normal beam diffraction geometry of D3 by tilting
the detector out of the horizontal plane by an angle ν = ± sin−1(λ(h − l)/

√
2a). Since the

azimuthal anisotropy is expected to depend on cos2 θk , no observable effect is expected unless
this factor is greater than fractional uncertainty in the measurement of the magnetic amplitudes
(≈3%). With λ = 0.85 Å, the hhl values giving ρ > 10◦ (cos2 θk > 0.03) which were
accessible within the geometric constraints imposed by the magnet were just 110, 002 and 112.
The experiment on chromium was carried out at a temperature of 274 K, and that on vanadium
at 100 K; in both, the magnetizing field was 9.5 T. The susceptibility of pure chromium
is 160 × 10−6 emu mol−1 and that of the vanadium sample 266 × 10−6 emu mol−1 at the
measuring temperatures. These gave induced magnetizations in 9.5 T of 27.3 ×10−4 µB Cr−1

and 45.4 × 10−4 µB V−1. The flipping ratios measured with such low magnetization are very
close to unity and long counting times were needed to obtain reasonable statistical precision.
In fact, in both experiments, only the six reflections 110, 101, 002, 020, 112, 211 and their
accessible equivalents were measured, each for a total of about 24 h. The results are given in
table 2. The magnetic structure factors FM (hkl) given in the table have been calculated using

R(hkl) = FN (hkl)2 + 2P+ FN (hkl)FM (hkl) sin2 θk + FM (hkl)2 sin2 θk

FN (hkl)2 + 2P− FN (hkl)FM (hkl) sin2 θk + FM (hkl)2 sin2 θk
(13)

in which R(hkl) is the flipping ratio, P+ and P− are the polarizations for the two neutron spin
states and FN (hkl) is the nuclear structure factor of the reflection. For vanadium it has been
shown that, because of the small coherent and large incoherent cross-sections, the contribution
of neutron spin–orbit (Schwinger) scattering to the polarization-dependent cross-section cannot
be neglected [20]. Due to Schwinger scattering the magnetic structure factor obtained from
equation (13) exceeds the true value by an amount

Fs(hkl) = FN (hkl)
b′

b
ν cos θk cot 2θB with ν = µN

e2

2mc2
(Z − fX (hkl)). (14)

b and b′ are the real and imaginary parts of the vanadium scattering length, µN is the neutron
magnetic moment in nuclear magnetons, Z and fX (hkl) are the atomic number and x-ray
scattering factor of V respectively. The corrections due to Schwinger scattering have been
calculated and have already been subtracted from the magnetic structure factors listed in table 2.
The corrections were found to be of the same order of magnitude as the standard deviations.
Equation (13) ignores the effects of extinction which, although negligible in vanadium owing
to its small coherent scattering length, are probably significant in the large single crystal of
chromium. It has however been shown that when the ratio γ = FM (hkl)/FN (hkl) � 1, the
correction for extinction takes the form [22]

γcorr = γobs

(
2 +

FN

y

dy

dFN

)−1

(15)

where y is the extinction factor which relates the kinematic integrated intensity of a reflection
I (hkl)kin to the observed integrated intensity I (hkl)obs :

I (hkl)obs = y I (hkl)kin ∝ y F2
N (hkl). (16)

For small γ , y depends on FN (hkl), and on the physical conditions of the experiment such as
wavelength and path length, which are nearly the same for equivalent reflections measured at
different θk . Hence by calculating an asymmetry factor

S(hhl) = (FM (hhl) − FM(lhh))/(FM (hhl) + FM (lhh)), (17)
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Table 2. Magnetic structure factors FM and the corresponding asymmetry factors for hhl and
lhh reflections of Cr and V measured in 9.5 T. The relevant form factor integrals are also listed.
(Note: The magnetic structure factors, FM , are in units of 10−5 µB/cell. The asymmetry factor
S(hhl) = (FM (hhl) − FM (lhh))/(FM (hhl) + FM (lhh)).)

Chromium Vanadium

Form factors Form factors

hkl FM S(hhl) 〈 j0〉 〈 j2〉 〈 j4〉 FM S(hhl) 〈 j0〉 〈 j2〉 〈 j4〉
110 312(9) −0.046(20) 0.457 0.166 0.031 361(6) −0.019(19) 0.451 0.169 0.031
101 342(10) 375(12)

002 215(12) −0.110(54) 0.249 0.187 0.058 223(9) −0.047(29) 0.240 0.190 0.059
200 268(23) 225(10)

112 178(16) 0.008(71) 0.146 0.178 0.074 178(8) −0.007(27) 0.136 0.180 0.076
211 175(19) 180(6)

Table 3. The values of θk G and y calculated for the reflections measured in the experiment. (Note:
x = δ/(2ξ2 + ξ1) and y = (ξ2 − 2ξ1)/(2ξ2 + ξ1); G is defined by equation (19).)

Chromium Vanadium

lhh θk (deg) cos2 θk G(x = 0.22) y G(x = 1.11) y

101 60 0.250 0.1490 0.81(35) 0.0931 1.2(1.2)
200 45 0.500 0.2773 1.26(62) 0.1841 2.0(1.2)
211 73 0.083 0.3967 −4(42) 0.2783 4(14)

the effects of extinction may be largely eliminated. The asymmetry factors calculated for the
three reflections 110, 002 and 112 are also listed in table 2.

4. Analysis of the results

The results in table 2 show that the asymmetry factors measured for chromium and vanadium
follow the same trend as one another, being small and negative for 110; larger, but still negative,
for 002; and not significantly different from zero for 112. Their magnitudes are roughly
proportional to cos2 θk (table 3). The negative values suggest that ξ2 > 2ξ1. The values
measured for chromium are approximately twice those measured for vanadium and since, as
may be seen from table 2, the form factors of Cr and V are not significantly different, this implies
that the proportion of orbital moment in chromium is about twice that in vanadium. This result
agrees well with the band structure calculations [14] which give 85 and 46% respectively.

Recalling that FM ∝ M⊥0/ sin2 θk , and using the equations derived in section 2, the
asymmetry factor may be expressed in terms of the parameters ξ2, ξ1 and δ:

S(k, θk) = − 15(〈 j2(k)〉 + 〈 j4(k)〉)(ξ2 − 2ξ1) cos2 θk

28(〈 j0(k)〉δ + (〈 j0(k)〉 + 〈 j2(k)〉(2ξ2 + ξ1)
. (18)

The spin moment is proportional to δ and the orbital moment to 2ξ2 + ξ1. Defining
x = δ/(2ξ2 + ξ1) as the ratio of spin to orbital moment, and y as the ratio (ξ2 − 2ξ1)/(2ξ2 + ξ1),
the asymmetry factor becomes

S(k, θk) = G(k, x)y cos2 θk = −15(〈 j2(k)〉 + 〈 j4(k)〉)y cos2 θk

28(〈 j0(k)〉(1 + x) + 〈 j2(k)〉) . (19)
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The values of θk , for the measured reflections, and the corresponding factors G(k, x)

calculated with x = 0.22 and 1.11 for chromium and vanadium respectively [14], are listed in
table 3. They have been used to determine the values of y needed to obtain the experimental
result. The values obtained for y are consistent with one another within experimental error,
giving mean values y = 0.65(24) (ξ1/ξ2 = −0.11(17)) for chromium and y = 0.46(1)

(ξ1/ξ2 = 0.03(11)) for vanadium. Since a negative value for ξ1/ξ2 is unphysical, these results
suggest that in both chromium and vanadium, effectively the whole of the orbital moment is
due to orbitals with |m| = 2.

5. Discussion

The foregoing analysis shows that the azimuthal anisotropy in the magnetic scattering from
field-induced moments in chromium and vanadium is consistent with a model in which the
orbital moment arises from unequal mixing between 3d states |±m〉. The numerical results
suggest a much greater participation of states with |m| = 2 than those with |m| = 1. This model
is however not that which is generally used to account for the paramagnetic susceptibility of
chromium and vanadium. It is usually assumed that in chromium the Fermi level lies between
two narrow bands, the lower made up of 3d functions with mainly t2g symmetry and the upper
of functions with mainly eg symmetry. Applying a magnetic field lowers the energy of the
bands containing electrons with spins parallel to the field (positive spin) relative to the negative
spin bands. This leads to an imbalance in the populations of positive and negative spin bands,
and hence to a spin moment proportional to the magnetic field, the spin enhancement factor
and the density of states at the Fermi surface. The orbital moment in this model arises from
mixing of empty eg states with occupied t2g states by the potential due to the applied field.
Taking the field direction [11̄0] as the z-axis and putting x ‖ [001], the t2g functions and eg

functions can be written as

t0 =
√

1
8

(|−2〉 + |2〉 − √
6|0〉) e0 =

√
1
8

(√
3|−2〉 +

√
3|2〉 +

√
2|0〉)

t1 =
√

1
2 (|−1〉 + |1〉) e1 =

√
1
2 (|−1〉 − |1〉)

t2 =
√

1
2 (|−2〉 − |2〉)

(20)

and the three lowest-energy states of the perturbed wavefunction are

t0 =
√

1
8

[|−2〉 + |2〉 − √
6|0〉]

t1 =
√

1
2

[
(1 − ζ )|−1〉 + (1 + ζ )|1〉]

t2 =
√

1
8

[
(2 − 3ζ )|−2〉 − (2 + 3ζ )|2〉 − √

6ζ |0〉]
(21)

where ζ = H eh̄/2m�, H being the applied field and � the energy difference between the eg

and t2g bands. The state t0 has no orbital moment, t1 has a moment 2ζ and t2 a moment 6ζ .
These states are rather similar to those used in section 2 with ξ1 = 2ζ , ξ2 = 3ζ , y = − 1

8 ;
except that the participation of the state |0〉 in t2 leads to non-zero matrix elements 〈2|t2|0〉,
〈0|t2| − 2〉 and hence to non-zero terms α(3,±2) = −

√
15
28ζ . The corresponding extra term in

M⊥(k)0 orbital is − sin2 θk[ 15
28ζ(3 cos2 θk −1) cos 2φk](〈 j2(k)〉+ 〈 j4(k)〉). In this expression, φk

is the angle in the horizontal plane between [001] and the scattering vector, and this term gives
rise to anisotropy within the equatorial plane. The relative importance of the azimuthal and
equatorial terms in the anisotropy with these wavefunctions is shown in table 4. It can be seen
that the equatorial term (D) makes a large contribution to the asymmetry factor which does
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Table 4. Geometric factors and asymmetry factors for the wavefunctions of equation (21). (Note:
φk is measured in the (110) plane from [100]. C(θk) = 3

28 (5 cos2 θk − 1) and D(θk , φk) =
15
28 (3 cos2 θk −1) cos 2φk . F = C(θhhl)+D(θhhl, φhhl )−C(θlhh)−D(θlhh , φlhh )(〈 j2(k)〉+〈 j4(k)〉).
S is the asymmetry factor calculated for vanadium when x is the ratio of spin to orbital moment.
The values for chromium are virtually identical.)

hkl θk (deg) φk (deg) C(θk ) D(θk , φk) F S(x = 0.22) S(x = 1.11)

110 90 90 −0.1071 0.5357
0.0891 −0.015 −0.010

101 60 54.7 0.0268 −0.0446
002 90 0 −0.1071 −0.5357

−0.1336 0.035 0.024
200 45 90 0.1607 −0.2679
112 90 35.3 −0.1071 −0.1786

−0.1226 0.044 0.033
211 73 64.8 −0.0625 0.2556

not follow the trend of the observations. The experimental results suggest that the states at the

Fermi surface whose mixing gives rise to the orbital moments are filled t2g states
√

1
2 (|−2〉−|2〉)

and empty states having the form
√

1
2 (|−2〉 + |2〉) rather than the form e0 of equation (20).

It is perhaps not surprising that the band model wavefunction is not able to account for the
experimental data, since it assumes infinitely narrow 3d bands and takes no account of the band
structure. A better model calculation could be made if the method developed by [14] were
extended to give the asymmetry factors. It would be interesting to know whether a realistic
band structure model will reproduce the results measured here.

6. Conclusions

Polarized neutron flipping ratios in chromium and vanadium have been measured for sets
of crystallographically equivalent reflections which had their scattering vectors differently
inclined to a 9.5 T field applied parallel to [11̄0]. Magnetic structure factors derived from
these results show a significant azimuthal anisotropy. Such anisotropy is predicted in the
orbital scattering from a simple model in which the orbital moment arises from the inequality
induced by the field between the mixing parameters of 3d states |±m〉. The magnitude of the
anisotropy is consistent with the predicted orbital moments only if the participation of electrons
in states with m = ±2 strongly outweighs that of those with m = ±1. On the other hand, in a
model in which the orbital moment arises from mixing between empty eg states and filled t2g

ones, the azimuthal anisotropy is outweighed by anisotropy in the (110) plane perpendicular
to the field, and this anisotropy is not present in the data. The results suggest that the band

orbitals are such that the active empty states at the Fermi surface have the form
√

1
2 (|−2〉+ |2〉)

and contain a negligible contribution from |0〉.
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