Orbital anisotropy of the field-induced moments in chromium and vanadium

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2003 J. Phys.: Condens. Matter 151747
(http://iopscience.iop.org/0953-8984/15/10/321)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.119
The article was downloaded on 19/05/2010 at 08:16

Please note that terms and conditions apply.

Orbital anisotropy of the field-induced moments in chromium and vanadium

P J Brown ${ }^{1,2}$, E Lelièvre-Berna ${ }^{1}$ and K R A Ziebeck ${ }^{2}$
${ }^{1}$ Institut Laue-Langevin, BP156 38042 Grenoble, France
${ }^{2}$ Department of Physics, Loughborough University, Leicestershire LE11 3TU, UK

Received 13 December 2002
Published 3 March 2003
Online at stacks.iop.org/JPhysCM/15/1747

Abstract

The dependence of the cross-section for magnetic scattering of neutrons on the angle θ_{k} between the field direction and the scattering vector has been used to study the orbital contribution to magnetic scattering from the moments aligned by a magnetic field in chromium and vanadium. The results lend support to band structure calculations which predict very high ratios of orbital to spin moments. The magnetic scattering from the moments induced in Cr and V by a 9.5 T field applied parallel to $\langle 110\rangle$, in sets of crystallographically equivalent reflections having different values of θ_{k}, has been determined from polarized neutron flipping ratio measurements. The results have been analysed using the tensor operator formalism. The results do not show the equatorial anisotropy predicted by a simple atomic model in which the orbital moment arises from mixing between empty e_{g} and filled $\mathrm{t}_{2 \mathrm{~g}}$ states. The azimuthal variation observed suggests that the major part of the orbital moment is due to 3 d states with projections of angular momentum $m= \pm 2$.

1. Introduction

The finite-temperature properties of metals in which there is more than one partly filled electron shell at the Fermi surface present an ongoing problem for both experiment and theory. One property which any model should predict is the ratio of spin to orbital contributions to the magnetization, whether it be spontaneous or induced by an applied magnetic field. Recently there has been an upsurge of interest in this ratio, triggered by the new possibility of measuring it directly using magnetic x-ray scattering [1,2]. Such experiments have already been made on a number of magnetically ordered 3d systems, but they are as yet of limited accuracy [3, 4]. They would be very difficult to carry out on paramagnetic systems in which even a high field can only align a small moment. In the past the ratio of spin to orbital magnetization has usually been estimated from the radial dependence of the magnetic neutron scattering, using a form
factor fitting technique. In this method the experimentally determined form factor $f(k)$ is fitted with a function of the form [5]

$$
\begin{equation*}
\mu_{T} f(k)=\left\langle j_{0}\right\rangle\left(\mu_{S}+\mu_{L}\right)+\left\langle j_{2}\right\rangle \mu_{L}+\mu_{D} \tag{1}
\end{equation*}
$$

where $\left\langle j_{0}\right\rangle,\left\langle j_{2}\right\rangle$ are the first- and second-order radial form factor integrals for the atom [6], μ_{S} and μ_{L} the spin and orbital moments and μ_{D} a diffuse moment. μ_{S}, μ_{L} and μ_{D} are the parameters of the model and $\mu_{T}=\mu_{S}+\mu_{L}+\mu_{D}$ is the moment per atom obtained from magnetization measurements. In many of the models which are used to describe the magnetization distribution in metallic systems, the proportion of the magnetization which is ascribed to the orbital moment is a disposable parameter. However, the fact that the orbital form factor $\left(\left\langle j_{0}\right\rangle+\left\langle j_{2}\right\rangle\right)$ differs only in shape from the spin form factor $\left(\left\langle j_{0}\right\rangle\right)$ means that, except in some special cases where the two moments are opposite and nearly equal [7], differentiation between orbital and spin moment depends very much on assumptions made about the shapes of $\left\langle j_{0}\right\rangle$ and $\left\langle j_{2}\right\rangle$ themselves. In x-ray (synchrotron) scattering the geometrical factors multiplying the orbital and spin contributions to the magnetic scattering are different [8].

The paramagnetic form factors of the 3d, 4d and 5d transition metals have been extensively studied using polarized neutron scattering [9] and many of the results have been interpreted using the above model. There is not, however, as yet general agreement between the orbital moments obtained in the polarized neutron measurements, and those predicted by theory. Particularly large proportions of orbital magnetization in the induced moments have been found in studies of chromium and vanadium [10-13]. For chromium the results suggest that 60% of the total induced moment is of orbital origin. Numerical calculations of the paramagnetic form factors of cubic transition metals, including chromium and vanadium, have been made by [14] from local density bands obtained using the KKR formalism. These calculations are in good agreement with the neutron results for chromium although they give an even higher percentage of orbital moment (82%). Unfortunately these authors do not discuss the anisotropy of the orbital scattering relative to the magnetization direction. Such anisotropy is expected because the spatial anisotropy of the electron wavefunctions depends directly on their orbital quantum numbers and hence on the orientation of any orbital moment.

2. Magnetic scattering by orbital moments

The crucial property exploited in this study is the way in which magnetic neutron scattering depends on the azimuthal angle θ_{k} between the magnetization direction and the scattering vector \boldsymbol{k}. This dependence is different for the spin and orbital components of the magnetization. The magnetic scattering amplitude of a Bragg reflection with scattering vector \boldsymbol{k} is given by the projection on the plane perpendicular to k of the k th Fourier component of the magnetization distribution. If the spin-orbit coupling energy is small compared to the crystal field splitting, the orbitals occupied by unpaired electrons, and hence the distribution of spin moment, should be independent of the direction of magnetization. The amplitude of the magnetic scattering due to spin should therefore be the same (apart from the reduction factor $\sin \theta_{k}$ introduced by the projection) in different equivalent directions with different values of θ_{k}. The same is not true for orbital magnetization where the form of the orbital functions and hence the shape of the orbital magnetization distribution depends on the direction of the applied field.

The theory of neutron scattering by orbital moments has been treated by several authors [15-18]. Here the tensor operator method introduced in [17] and further elaborated $[18,19]$ has been used. These latter authors develop an expression for the magnetic interaction operator for scattering by an electron wavefunction defined by angular momentum quantum numbers $J, M(J=L+S)$ as a vector function $M_{\perp}(\boldsymbol{k})$ of the scattering vector \boldsymbol{k}.
$M_{\perp}(\boldsymbol{k})$ is expressed in spherical components $M_{\perp}(\boldsymbol{k})_{q}, q=0, \pm 1$, where

$$
\begin{align*}
& M_{\perp 1}=\sqrt{\frac{3}{8 \pi}}\left(M_{\perp_{x}}+\mathrm{i} M_{\perp y}\right) ; \quad M_{\perp 0}=\sqrt{\frac{3}{4 \pi}} M_{\perp z} \\
& M_{\perp-1}=\sqrt{\frac{3}{8 \pi}}\left(M_{\perp_{x}}-\mathrm{i} M_{\perp y}\right) . \tag{2}
\end{align*}
$$

$M_{\perp}(\boldsymbol{k})$ is given in units of $\gamma_{N} e^{2} / m c^{2}$ by
$M_{\perp}(\boldsymbol{k})_{q}=\sqrt{4 \pi} \sum_{K Q} \sum_{K^{\prime} Q^{\prime}} Y_{Q}^{K}(\hat{\boldsymbol{k}})\left(A\left(K, K^{\prime}\right)+B\left(K, K^{\prime}\right)\right)\left(K^{\prime} Q^{\prime} J^{\prime} M^{\prime} \mid J M\right)\left(K Q K^{\prime} Q^{\prime} \mid 1 q\right)$.
The coefficients $A\left(K, K^{\prime}\right)$ and $B\left(K, K^{\prime}\right)$ give the orbital and spin contributions respectively and the two final brackets are Clebsch-Gordon vector-coupling (VC) coefficients. The radial dependence of the scattering is in the coefficients A and B through the form factor integrals:

$$
\begin{equation*}
\left\langle j_{K}(k)\right\rangle=\int U^{2}(r) j_{K}(k r) 4 \pi r^{2} \mathrm{~d} r \tag{4}
\end{equation*}
$$

where $U^{2}(r)$ is the radial dependence of the electron density and the $j_{K}(k r)$ are spherical Bessel functions. The maximum values of the integers K, K^{\prime}, Q and Q^{\prime} depend on the wavefunction through the VC coefficient $\left(K^{\prime} Q^{\prime} J^{\prime} M^{\prime} \mid J M\right)$. The $A\left(K, K^{\prime}\right)=0$ unless $K=K^{\prime} \pm 1$, whereas the $B\left(K, K^{\prime}\right)$ are zero unless $K=K^{\prime}$ or $K^{\prime} \pm 1$. The polarization dependence of the neutron scattering cross-section depends on just the component of M_{\perp} parallel to the polarization direction, which is in the present case parallel to the field direction. The experiment thus measures just the $q=0$ component of M_{\perp} and the VC coefficient ($K Q K^{\prime} Q^{\prime} \mid 10$) ensures that $M_{\perp 0}$ is zero unless $Q=-Q^{\prime}$.

If the wavefunctions of the electrons giving rise to the magnetization can be expressed as the sum of single-electron functions, ψ_{i}, expressed in an l, m basis with $l=2$, then the orbital part of the magnetic interaction vector can be written as
$M_{\perp}(\boldsymbol{k})_{0 \text { orbital }}=\sqrt{4 \pi} \sum_{K^{\prime}}\left[\sum_{K} A^{\prime}\left(K, K^{\prime}\right) \sum_{Q}\left(Y_{Q}^{K}(\hat{\boldsymbol{k}})\left(K Q K^{\prime}-Q \mid 10\right) \alpha\left(K^{\prime}, Q\right)\right)\right]$
with

$$
\begin{align*}
A^{\prime}\left(K, K^{\prime}\right)=- & (2(2 K+1))^{\frac{1}{2}}(2 l+1)^{\frac{3}{2}}(2 K+1)(i)^{K^{\prime}+1}\left(\left\langle j_{K^{\prime}-1}(k)\right\rangle+\left\langle j_{K^{\prime}+1}(k)\right\rangle\right) \\
& \times A\left(K^{\prime}, K^{\prime}, 2\right)\left(\begin{array}{ccc}
1 & K & K^{\prime} \\
0 & 0 & 0
\end{array}\right)\left\{\begin{array}{ccc}
1 & 1 & 1 \\
K^{\prime} & K & K^{\prime}
\end{array}\right\} . \tag{6}
\end{align*}
$$

The final two factors in equation (6), the first in brackets and the second in braces, are a $3 j$ symbol and a $6 j$ symbol respectively [21]. The form of $A\left(K^{\prime}, K^{\prime}, l\right)$ is given in equation 6.44 of [18], which has been used to calculate $A^{\prime \prime}\left(K, K^{\prime}\right)=A^{\prime}\left(K, K^{\prime}\right) /\left(\left\langle j_{K^{\prime}-1}(k)\right\rangle+\left\langle j_{K^{\prime}+1}(k)\right\rangle\right)$. The values of $A^{\prime \prime}\left(K, K^{\prime}\right)$ and the VC coefficients needed to evaluate the sums in equation (5) are given in table 1 . The only terms in equation (5) which depend on the actual composition of the single-electron functions $|l m\rangle$ are the $\alpha\left(K^{\prime}, Q\right)$, given by

$$
\begin{equation*}
\alpha\left(K^{\prime}, Q\right)=\sum_{m, m^{\prime}} \sum_{i}\left\langle m^{\prime}\right| \psi_{i}|m\rangle\left(K^{\prime}-Q 2 m^{\prime} \mid 2 m\right) . \tag{7}
\end{equation*}
$$

If the unperturbed d functions are degenerate, orbital magnetization is due to a small imbalance, induced by the field, in the energies of orbitals with opposite values of the projection m. The perturbed functions of lowest energy have the form $\psi_{ \pm m}=\sqrt{\frac{1}{2}}\left(\left(1+\xi_{m}\right)|m\rangle \pm\left(1-\xi_{m}\right)|-m\rangle\right)$, with mean orbital angular momentum $\left\langle L_{z}\right\rangle=\xi_{1}+2 \xi_{2}$. The only non-zero values of α are

Table 1. Coefficients needed in the calculation of $M_{\perp 0 \text { orbital }}$. $A^{\prime \prime}\left(K, K^{\prime}\right)=$ $A^{\prime}\left(K, K^{\prime}\right) /\left(\left\langle j_{K^{\prime}-1}(k)\right\rangle+\left\langle j_{K^{\prime}+1}(k)\right\rangle\right)$.

K^{\prime}	1			3		
K	0	2		2		4
$A^{\prime \prime}\left(K, K^{\prime}\right)$	$-\sqrt{2 / 3}$	$-\sqrt{1 / 3}$		$-\sqrt{8} / 7$		$-\sqrt{3} / 7$
Q	0	0	0		± 2	0
$\left(K Q K^{\prime}-Q \mid 10\right)$	1	$-\sqrt{2 / 5}$	$3 / \sqrt{35}$	$1 / \sqrt{7}$	$-2 / \sqrt{21}$	$-1 / \sqrt{7}$

$\alpha(1,0)=-\sqrt{\frac{1}{6}}\left(2 \xi_{2}+\xi_{1}\right)$ and $\alpha(3,0)=-\sqrt{\frac{1}{14}}\left(\xi_{2}-2 \xi_{1}\right)$. Carrying out the summation and arranging the equation so that terms with the same radial dependence are grouped together gives

$$
\begin{align*}
M_{\perp}(\boldsymbol{k})_{0 \text { orbital }} & =\sqrt{4 \pi}\left\{\frac{1}{3}\left(2 \xi_{2}+\xi_{1}\right)\left(Y_{0}^{0}(\hat{\boldsymbol{k}})-\frac{1}{\sqrt{5}} Y_{0}^{2}(\hat{\boldsymbol{k}})\right)\left(\left\langle j_{0}(k)\right\rangle+\left\langle j_{2}(k)\right\rangle\right)\right. \\
& \left.+\frac{2}{49}\left(\xi_{2}-2 \xi_{1}\right)\left(\frac{3}{\sqrt{5}} Y_{0}^{2}(\hat{\boldsymbol{k}})-Y_{0}^{4}(\hat{\boldsymbol{k}})\right)\left(\left\langle j_{2}(k)\right\rangle+\left\langle j_{4}(k)\right\rangle\right)\right\} . \tag{8}
\end{align*}
$$

Writing the spherical harmonic functions $Y_{Q}^{K}(\hat{\boldsymbol{k}})$ in terms of the spherical polar angles θ_{k} and ϕ_{k}, one gets

$$
\begin{align*}
M_{\perp}(\boldsymbol{k})_{0 \text { orbital }} & =\sin ^{2} \theta_{k}\left(\frac{1}{2}\left(2 \xi_{2}+\xi_{1}\right)\left(\left\langle j_{0}(k)\right\rangle+\left\langle j_{2}(k)\right\rangle\right)\right. \\
& \left.+\frac{3}{28}\left(\xi_{2}-2 \xi_{1}\right)\left(5 \cos ^{2} \theta_{k}-1\right)\left(\left\langle j_{2}(k)\right\rangle+\left\langle j_{4}(k)\right\rangle\right)\right) . \tag{9}
\end{align*}
$$

The spin scattering arises from the small imbalance (δ), induced by the field, in the occupancies of states ψ_{i} at the Fermi surface with spins parallel and antiparallel to the field. Since δ, ξ_{1} and ξ_{2} are $\ll 1$, terms in the sums over matrix elements, of second order and higher in δ and ξ_{i} can be neglected. With this proviso, the spin scattering $M_{\perp}(\boldsymbol{k})_{0 \text { spin }} / \sin ^{2} \theta_{k}$ is independent of the direction of magnetization and, unlike the orbital term, should be the same for equivalent reflections measured with different values of θ_{k}. The component of the magnetic interaction vector parallel to the field can then be written as

$$
\begin{equation*}
M_{\perp}(\boldsymbol{k})_{0 \text { spin }}=\sin ^{2} \theta_{k} \sqrt{4 \pi} \sum_{K} B^{\prime}(K) \sum_{Q}\left(Y_{Q}^{K}(\hat{\boldsymbol{k}}) \beta(K, Q)\right) \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
B^{\prime}(K)=(2 K+1)^{\frac{1}{2}}(20 K 0 \mid 20)\left\langle j_{K}(k)\right\rangle . \tag{11}
\end{equation*}
$$

The part which depends on the electron wavefunction is in the terms $\beta(K, Q)$ given by

$$
\begin{equation*}
\beta(K, Q)=\sum_{m, m^{\prime}} \sum_{i}\left\langle m^{\prime}\right| \boldsymbol{S}_{0} \psi_{i}|m\rangle\left(K Q 2 m^{\prime} \mid 2 m\right) \tag{12}
\end{equation*}
$$

If the orbital states are all equally occupied, $\beta(K, Q)=0$ unless $K=Q=0$ and $M_{\perp}(\boldsymbol{k})_{0 s p i n}=\sin ^{2} \theta_{k}\left\langle j_{0}(k)\right\rangle \delta$.

3. Experimental details

The single crystals of pure chromium and vanadium used in the experiments were mounted with a [1 $1 \overline{1} 0]$ axis parallel to the field direction of the 10 T superconducting magnet on the polarized neutron diffractometer D3. The chromium crystal which had dimensions $\approx 5 \times 5 \times 10 \mathrm{~mm}^{3}$ with its long axis parallel to $\langle 1 \overline{1} 0\rangle$ was cut from a large boule. The vanadium crystal was the largest
of those used in the previous form factor measurements [13]. With this crystal orientation, reflections of the form $h h l$ have scattering vectors at $\theta_{k}=90^{\circ}$ to the field axis, whereas for the cubically equivalent $h l h$ and $l h h$ reflections $\theta_{k}=\cos ^{-1}\left((h-l) / \sqrt{2\left(2 h^{2}+l^{2}\right)}\right)$. The latter type of reflection can be measured with the normal beam diffraction geometry of D3 by tilting the detector out of the horizontal plane by an angle $v= \pm \sin ^{-1}(\lambda(h-l) / \sqrt{2} a)$. Since the azimuthal anisotropy is expected to depend on $\cos ^{2} \theta_{k}$, no observable effect is expected unless this factor is greater than fractional uncertainty in the measurement of the magnetic amplitudes $(\approx 3 \%)$. With $\lambda=0.85 \AA$, the $h h l$ values giving $\rho>10^{\circ}\left(\cos ^{2} \theta_{k}>0.03\right)$ which were accessible within the geometric constraints imposed by the magnet were just 110, 002 and 112. The experiment on chromium was carried out at a temperature of 274 K , and that on vanadium at 100 K ; in both, the magnetizing field was 9.5 T . The susceptibility of pure chromium is $160 \times 10^{-6} \mathrm{emu} \mathrm{mol}^{-1}$ and that of the vanadium sample $266 \times 10^{-6} \mathrm{emu} \mathrm{mol}^{-1}$ at the measuring temperatures. These gave induced magnetizations in 9.5 T of $27.3 \times 10^{-4} \mu_{B} \mathrm{Cr}^{-1}$ and $45.4 \times 10^{-4} \mu_{B} \mathrm{~V}^{-1}$. The flipping ratios measured with such low magnetization are very close to unity and long counting times were needed to obtain reasonable statistical precision. In fact, in both experiments, only the six reflections $110,101,002,020,112,211$ and their accessible equivalents were measured, each for a total of about 24 h . The results are given in table 2. The magnetic structure factors $F_{M}(h k l)$ given in the table have been calculated using
$R(h k l)=\frac{F_{N}(h k l)^{2}+2 P^{+} F_{N}(h k l) F_{M}(h k l) \sin ^{2} \theta_{k}+F_{M}(h k l)^{2} \sin ^{2} \theta_{k}}{F_{N}(h k l)^{2}+2 P^{-} F_{N}(h k l) F_{M}(h k l) \sin ^{2} \theta_{k}+F_{M}(h k l)^{2} \sin ^{2} \theta_{k}}$
in which $R(h k l)$ is the flipping ratio, P^{+}and P^{-}are the polarizations for the two neutron spin states and $F_{N}(h k l)$ is the nuclear structure factor of the reflection. For vanadium it has been shown that, because of the small coherent and large incoherent cross-sections, the contribution of neutron spin-orbit (Schwinger) scattering to the polarization-dependent cross-section cannot be neglected [20]. Due to Schwinger scattering the magnetic structure factor obtained from equation (13) exceeds the true value by an amount
$F_{s}(h k l)=F_{N}(h k l) \frac{b^{\prime}}{b} v \cos \theta_{k} \cot 2 \theta_{B} \quad$ with $v=\mu_{N} \frac{e^{2}}{2 m c^{2}}\left(Z-f_{X}(h k l)\right)$.
b and b^{\prime} are the real and imaginary parts of the vanadium scattering length, μ_{N} is the neutron magnetic moment in nuclear magnetons, Z and $f_{X}(h k l)$ are the atomic number and x-ray scattering factor of V respectively. The corrections due to Schwinger scattering have been calculated and have already been subtracted from the magnetic structure factors listed in table 2. The corrections were found to be of the same order of magnitude as the standard deviations. Equation (13) ignores the effects of extinction which, although negligible in vanadium owing to its small coherent scattering length, are probably significant in the large single crystal of chromium. It has however been shown that when the ratio $\gamma=F_{M}(h k l) / F_{N}(h k l) \ll 1$, the correction for extinction takes the form [22]

$$
\begin{equation*}
\gamma_{c o r r}=\gamma_{o b s}\left(2+\frac{F_{N}}{y} \frac{\mathrm{~d} y}{\mathrm{~d} F_{N}}\right)^{-1} \tag{15}
\end{equation*}
$$

where y is the extinction factor which relates the kinematic integrated intensity of a reflection $I(h k l)_{k i n}$ to the observed integrated intensity $I(h k l)_{o b s}$:

$$
\begin{equation*}
I(h k l)_{o b s}=y I(h k l)_{k i n} \propto y F_{N}^{2}(h k l) \tag{16}
\end{equation*}
$$

For small γ, y depends on $F_{N}(h k l)$, and on the physical conditions of the experiment such as wavelength and path length, which are nearly the same for equivalent reflections measured at different θ_{k}. Hence by calculating an asymmetry factor

$$
\begin{equation*}
S(h h l)=\left(F_{M}(h h l)-F_{M}(l h h)\right) /\left(F_{M}(h h l)+F_{M}(l h h)\right), \tag{17}
\end{equation*}
$$

Table 2. Magnetic structure factors F_{M} and the corresponding asymmetry factors for $h h l$ and lhh reflections of Cr and V measured in 9.5 T . The relevant form factor integrals are also listed. (Note: The magnetic structure factors, F_{M}, are in units of $10^{-5} \mu_{B} /$ cell. The asymmetry factor $\left.S(h h l)=\left(F_{M}(h h l)-F_{M}(l h h)\right) /\left(F_{M}(h h l)+F_{M}(l h h)\right).\right)$

hkl	Chromium					Vanadium				
	F_{M}	$S(h h l)$	Form factors			F_{M}	$S(h h l)$	Form factors		
			$\left\langle j_{0}\right\rangle$	$\left\langle j_{2}\right\rangle$	$\left\langle j_{4}\right\rangle$			$\left\langle j_{0}\right\rangle$	$\left\langle j_{2}\right\rangle$	$\left\langle j_{4}\right\rangle$
110	312(9)	-0.046(20)	0.457	0.166	0.031	361(6)	-0.019(19)	0.451	0.169	0.031
101	342(10)					375(12)				
002	215(12)	-0.110(54)	0.249	0.187	0.058	223(9)	-0.047(29)	0.240	0.190	0.059
200	268(23)					225(10)				
112	178(16)	0.008(71)	0.146	0.178	0.074	178(8)	-0.007(27)	0.136	0.180	0.076
211	175(19)					180(6)				

Table 3. The values of $\theta_{k} G$ and y calculated for the reflections measured in the experiment. (Note: $x=\delta /\left(2 \xi_{2}+\xi_{1}\right)$ and $y=\left(\xi_{2}-2 \xi_{1}\right) /\left(2 \xi_{2}+\xi_{1}\right) ; G$ is defined by equation (19).)

			Chromium			Vanadium	
$\ln h$	$\theta_{k}(\mathrm{deg})$	$\cos ^{2} \theta_{k}$	$G(x=0.22)$	y		$G(x=1.11)$	y
101	60	0.250	0.1490	$0.81(35)$		0.0931	$1.2(1.2)$
200	45	0.500	0.2773	$1.26(62)$		0.1841	$2.0(1.2)$
211	73	0.083	0.3967	$-4(42)$	0.2783	$4(14)$	

the effects of extinction may be largely eliminated. The asymmetry factors calculated for the three reflections 110,002 and 112 are also listed in table 2.

4. Analysis of the results

The results in table 2 show that the asymmetry factors measured for chromium and vanadium follow the same trend as one another, being small and negative for 110; larger, but still negative, for 002 ; and not significantly different from zero for 112 . Their magnitudes are roughly proportional to $\cos ^{2} \theta_{k}$ (table 3). The negative values suggest that $\xi_{2}>2 \xi_{1}$. The values measured for chromium are approximately twice those measured for vanadium and since, as may be seen from table 2, the form factors of Cr and V are not significantly different, this implies that the proportion of orbital moment in chromium is about twice that in vanadium. This result agrees well with the band structure calculations [14] which give 85 and 46% respectively.

Recalling that $F_{M} \propto M_{\perp 0} / \sin ^{2} \theta_{k}$, and using the equations derived in section 2, the asymmetry factor may be expressed in terms of the parameters ξ_{2}, ξ_{1} and δ :

$$
\begin{equation*}
S\left(k, \theta_{k}\right)=-\frac{15\left(\left\langle j_{2}(k)\right\rangle+\left\langle j_{4}(k)\right\rangle\right)\left(\xi_{2}-2 \xi_{1}\right) \cos ^{2} \theta_{k}}{28\left(\left\langle j_{0}(k)\right\rangle \delta+\left(\left\langle j_{0}(k)\right\rangle+\left\langle j_{2}(k)\right\rangle\left(2 \xi_{2}+\xi_{1}\right)\right.\right.} . \tag{18}
\end{equation*}
$$

The spin moment is proportional to δ and the orbital moment to $2 \xi_{2}+\xi_{1}$. Defining $x=\delta /\left(2 \xi_{2}+\xi_{1}\right)$ as the ratio of spin to orbital moment, and y as the ratio $\left(\xi_{2}-2 \xi_{1}\right) /\left(2 \xi_{2}+\xi_{1}\right)$, the asymmetry factor becomes

$$
\begin{equation*}
S\left(k, \theta_{k}\right)=G(k, x) y \cos ^{2} \theta_{k}=-\frac{15\left(\left\langle j_{2}(k)\right\rangle+\left\langle j_{4}(k)\right\rangle\right) y \cos ^{2} \theta_{k}}{28\left(\left\langle j_{0}(k)\right\rangle(1+x)+\left\langle j_{2}(k)\right\rangle\right)} . \tag{19}
\end{equation*}
$$

The values of θ_{k}, for the measured reflections, and the corresponding factors $G(k, x)$ calculated with $x=0.22$ and 1.11 for chromium and vanadium respectively [14], are listed in table 3. They have been used to determine the values of y needed to obtain the experimental result. The values obtained for y are consistent with one another within experimental error, giving mean values $y=0.65(24)\left(\xi_{1} / \xi_{2}=-0.11(17)\right)$ for chromium and $y=0.46(1)$ ($\xi_{1} / \xi_{2}=0.03(11)$) for vanadium. Since a negative value for ξ_{1} / ξ_{2} is unphysical, these results suggest that in both chromium and vanadium, effectively the whole of the orbital moment is due to orbitals with $|m|=2$.

5. Discussion

The foregoing analysis shows that the azimuthal anisotropy in the magnetic scattering from field-induced moments in chromium and vanadium is consistent with a model in which the orbital moment arises from unequal mixing between 3d states $| \pm m\rangle$. The numerical results suggest a much greater participation of states with $|m|=2$ than those with $|m|=1$. This model is however not that which is generally used to account for the paramagnetic susceptibility of chromium and vanadium. It is usually assumed that in chromium the Fermi level lies between two narrow bands, the lower made up of 3 d functions with mainly $\mathrm{t}_{2 \mathrm{~g}}$ symmetry and the upper of functions with mainly e_{g} symmetry. Applying a magnetic field lowers the energy of the bands containing electrons with spins parallel to the field (positive spin) relative to the negative spin bands. This leads to an imbalance in the populations of positive and negative spin bands, and hence to a spin moment proportional to the magnetic field, the spin enhancement factor and the density of states at the Fermi surface. The orbital moment in this model arises from mixing of empty e_{g} states with occupied $\mathrm{t}_{2 \mathrm{~g}}$ states by the potential due to the applied field. Taking the field direction [110] as the z-axis and putting $x \|[001]$, the $\mathrm{t}_{2 \mathrm{~g}}$ functions and e_{g} functions can be written as
$t_{0}=\sqrt{\frac{1}{8}}(|-2\rangle+|2\rangle-\sqrt{6}|0\rangle) \quad e_{0}=\sqrt{\frac{1}{8}}(\sqrt{3}|-2\rangle+\sqrt{3}|2\rangle+\sqrt{2}|0\rangle)$
$t_{1}=\sqrt{\frac{1}{2}}(|-1\rangle+|1\rangle) \quad e_{1}=\sqrt{\frac{1}{2}}(|-1\rangle-|1\rangle)$
$t_{2}=\sqrt{\frac{1}{2}}(|-2\rangle-|2\rangle)$
and the three lowest-energy states of the perturbed wavefunction are

$$
\begin{align*}
t_{0} & =\sqrt{\frac{1}{8}}[|-2\rangle+|2\rangle-\sqrt{6}|0\rangle] \\
t_{1} & =\sqrt{\frac{1}{2}}[(1-\zeta)|-1\rangle+(1+\zeta)|1\rangle] \tag{21}\\
t_{2} & =\sqrt{\frac{1}{8}}[(2-3 \zeta)|-2\rangle-(2+3 \zeta)|2\rangle-\sqrt{6} \zeta|0\rangle]
\end{align*}
$$

where $\zeta=H e \hbar / 2 m \Delta, H$ being the applied field and Δ the energy difference between the e_{g} and $\mathrm{t}_{2 \mathrm{~g}}$ bands. The state t_{0} has no orbital moment, t_{1} has a moment 2ζ and t_{2} a moment 6ζ. These states are rather similar to those used in section 2 with $\xi_{1}=2 \zeta, \xi_{2}=3 \zeta, y=-\frac{1}{8}$; except that the participation of the state $|0\rangle$ in t_{2} leads to non-zero matrix elements $\langle 2| t_{2}|0\rangle$, $\langle 0| t_{2}|-2\rangle$ and hence to non-zero terms $\alpha(3, \pm 2)=-\sqrt{\frac{15}{28}} \zeta$. The corresponding extra term in $M_{\perp}(\boldsymbol{k})_{0 \text { orbital }}$ is $-\sin ^{2} \theta_{k}\left[\frac{15}{28} \zeta\left(3 \cos ^{2} \theta_{k}-1\right) \cos 2 \phi_{k}\right]\left(\left\langle j_{2}(k)\right\rangle+\left\langle j_{4}(k)\right\rangle\right)$. In this expression, ϕ_{k} is the angle in the horizontal plane between [001] and the scattering vector, and this term gives rise to anisotropy within the equatorial plane. The relative importance of the azimuthal and equatorial terms in the anisotropy with these wavefunctions is shown in table 4. It can be seen that the equatorial term (D) makes a large contribution to the asymmetry factor which does

Table 4. Geometric factors and asymmetry factors for the wavefunctions of equation (21). (Note: ϕ_{k} is measured in the (110) plane from [100]. $C\left(\theta_{k}\right)=\frac{3}{28}\left(5 \cos ^{2} \theta_{k}-1\right)$ and $D\left(\theta_{k}, \phi_{k}\right)=$ $\frac{15}{28}\left(3 \cos ^{2} \theta_{k}-1\right) \cos 2 \phi_{k} . F=C\left(\theta_{h h l}\right)+D\left(\theta_{h h l}, \phi_{h h l}\right)-C\left(\theta_{l h h}\right)-D\left(\theta_{l h}, \phi_{l h}\right)\left(\left\langle j_{2}(k)\right\rangle+\left\langle j_{4}(k)\right\rangle\right)$. S is the asymmetry factor calculated for vanadium when x is the ratio of spin to orbital moment. The values for chromium are virtually identical.)

$h k l$	$\theta_{k}(\mathrm{deg})$	$\phi_{k}(\mathrm{deg})$	$C\left(\theta_{k}\right)$	$D\left(\theta_{k}, \phi_{k}\right)$	F	$S(x=0.22)$	$S(x=1.11)$
110	90	90	-0.1071	0.5357			
101	60	54.7	0.0268	-0.0446		0.0891	-0.015
002	90	0	-0.1071	-0.5357			-0.010
200	45	90	0.1607	-0.2679			
112	90	35.3	-0.1071	-0.1786			
211	73	64.8	-0.0625	0.2556		0.035	

not follow the trend of the observations. The experimental results suggest that the states at the Fermi surface whose mixing gives rise to the orbital moments are filled $\mathrm{t}_{2 \mathrm{~g}}$ states $\sqrt{\frac{1}{2}}(|-2\rangle-|2\rangle)$ and empty states having the form $\sqrt{\frac{1}{2}}(|-2\rangle+|2\rangle)$ rather than the form e_{0} of equation (20).

It is perhaps not surprising that the band model wavefunction is not able to account for the experimental data, since it assumes infinitely narrow 3d bands and takes no account of the band structure. A better model calculation could be made if the method developed by [14] were extended to give the asymmetry factors. It would be interesting to know whether a realistic band structure model will reproduce the results measured here.

6. Conclusions

Polarized neutron flipping ratios in chromium and vanadium have been measured for sets of crystallographically equivalent reflections which had their scattering vectors differently inclined to a 9.5 T field applied parallel to [110]. Magnetic structure factors derived from these results show a significant azimuthal anisotropy. Such anisotropy is predicted in the orbital scattering from a simple model in which the orbital moment arises from the inequality induced by the field between the mixing parameters of 3 d states $| \pm m\rangle$. The magnitude of the anisotropy is consistent with the predicted orbital moments only if the participation of electrons in states with $m= \pm 2$ strongly outweighs that of those with $m= \pm 1$. On the other hand, in a model in which the orbital moment arises from mixing between empty e_{g} states and filled $\mathrm{t}_{2 \mathrm{~g}}$ ones, the azimuthal anisotropy is outweighed by anisotropy in the (110) plane perpendicular to the field, and this anisotropy is not present in the data. The results suggest that the band orbitals are such that the active empty states at the Fermi surface have the form $\sqrt{\frac{1}{2}}(|-2\rangle+|2\rangle)$ and contain a negligible contribution from $|0\rangle$.

Acknowledgment

We would like to thank S W Lovesey for helpful discussions during the preparation of this manuscript.

References

[1] de Bergevin F and Brunel M 1981 Acta Crystallogr. A 37314
[2] Gibbs G, Grübel G, Harshman D R, McWhan D B, Mills D and Vettier C 1991 Phys. Rev. B 435663
[3] Neubeck W, Vettier C, Fernandez V, de Bergevin F and Giles C 1999 J. Appl. Phys. 854847
[4] Strempfer J, Brückel T, Hupfield D, Schneider J R, Liss K-D and Tschentscher T 1997 Europhys. Lett. 40569
[5] Moon R M 1964 Phys. Rev. 136 A195
[6] Watson R E and Freeman A J 1960 Phys. Rev. 1201125
[7] Koehler W C and Moon R M 1972 Phys. Rev. Lett. 291468
[8] Lovesey S W and Collins S P 1996 X-ray Scattering and Absorption by Magnetic Materials (Oxford: Clarendon)
[9] Moon R M, Koehler W C and Cable J W 1976 Proc. ICNS (ORNL Publication CONF-760601) p 577
[10] Stassis C, Kline G R and Sinha S K 1975 Phys. Rev. B 112171
[11] Strempfer J, Brückel T, McIntyre G J, Tasset F, Zeiske T, Burger K and Prandl W 1999 Physica B 267/268 56
[12] Shull C G and Ferrier R P 1963 Phys. Rev. Lett. 10295
[13] Brown P J and Forsyth J B 1984 J. Phys. F: Met. Phys. 141715
[14] Cooke J F, Liu S H and Liu A J 1988 Phys. Rev. B 37289
[15] Trammell G T 1953 Phys. Rev. 921387
[16] Odiot S and St James D 1960 J. Phys. Chem. Solids 17117
[17] Johnston D F 1966 Proc. Phys. Soc. 8837
[18] Marshal W and Lovesey S W 1971 Theory of Thermal Neutron Scattering (London: Oxford University Press) ch 6
[19] Balcar E and Lovesey S W 2002 J. Phys.: Condens. Matter 1410281
[20] Shull C G 1963 Phys. Rev. Lett. 10297
[21] Edmonds A R 1960 Angular Momentum in Quantum Mechanics (Princeton, NJ: Princeton University Press) pp 45-92
[22] Delapalme A, Lander G H and Brown P J 1978 J. Phys. C: Solid State Phys. 111441

